Approximation Properties and Construction of Hermite Interpolants and Biorthogonal Multiwavelets
نویسنده
چکیده
Multiwavelets are generated from refinable function vectors by using multiresolution analysis. In this paper we investigate the approximation properties of a multivariate refinable function vector associated with a general dilation matrix in terms of both the subdivision operator and the order of sum rules satisfied by the matrix refinement mask. Based on a fact about the sum rules of biorthogonal multiwavelets, a construction by cosets (CBC) algorithm is presented to construct biorthogonal multiwavelets with arbitrary order of vanishing moments. More precisely, to obtain biorthogonal multiwavelets, we have to construct primal and dual masks. Given any primal matrix mask a and a general dilation matrix M , the proposed CBC algorithm reduces the construction of all dual masks of a, which satisfy the sum rules of arbitrary order, to a problem of solving a well organized system of linear equations. We prove in a constructive way that for any given primal mask a with a dilation matrix M and for any positive integer k, we can always construct a dual mask ea of a such that ea satisfies the sum rules of order k. In addition, we provide a general way for the construction of Hermite interpolatory matrix masks in the univariate setting with any dilation factors. From such Hermite interpolatory masks, smooth Hermite interpolants, including the well known piecewise Hermite cubics as a special case, are obtained and are used to construct biorthogonal multiwavelets. As an example, a C3 Hermite interpolant with support [−3, 3] is presented. Then we shall apply the CBC algorithm to such Hermite interpolatory masks to construct biorthogonal multiwavelets. Several examples of biorthogonal multiwavelets are provided to illustrate the general theory. In particular, a C1 dual function vector with support [−4, 4] of the piecewise Hermite cubics is given. 1991 Mathematics Subject Classification. 41A25 41A05 65D05 46E35 41A63.
منابع مشابه
Hermite Interpolants and Biorthogonal Multiwavelets with Arbitrary Order of Vanishing Moments
Biorthogonal multiwavelets are generated from refinable function vectors by using multiresolution analyses. To obtain a biorthogonal multiwavelet, we need to construct a pair of primal and dual masks, from which two refinable function vectors are obtained so that a multiresolution analysis is formed to derive a biorthogonal multiwavelet. It is well known that the order of vanishing moments of a...
متن کاملBiorthogonal cubic Hermite spline multiwavelets on the interval for solving the fractional optimal control problems
In this paper, a new numerical method for solving fractional optimal control problems (FOCPs) is presented. The fractional derivative in the dynamic system is described in the Caputo sense. The method is based upon biorthogonal cubic Hermite spline multiwavelets approximations. The properties of biorthogonal multiwavelets are first given. The operational matrix of fractional Riemann-Lioville in...
متن کاملFractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations
The construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. We apply this system as basis functions to solve the fractional differential and integro-differential equations. Biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. Some test pr...
متن کاملBiorthogonal Multiwavelets on the Interval: Cubic Hermite Splines
Starting with Hermite cubic splines as the primal multigenerator, first a dual multigenerator onR is constructed that consists of continuous functions, has small support, and is exact of order 2. We then derive multiresolution sequences on the interval while retaining the polynomial exactness on the primal and dual sides. This guarantees moment conditions of the corresponding wavelets. The conc...
متن کاملBiorthogonal cubic Hermite spline multiwavelets on the interval with complementary boundary conditions
In this article, a new biorthogonal multiwavelet basis on the interval with complementary homogeneous Dirichlet boundary conditions of second order is presented. This construction is based on the multiresolution analysis onR introduced in [DHJK00] which consists of cubic Hermite splines on the primal side. Numerical results are given for the Riesz constants and both a non-adaptive and an adapti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 110 شماره
صفحات -
تاریخ انتشار 2001